Adding strength to compensations and asymmetry.
/FootNotes, with The Gait Guys.
The CNS runs the show. Compensations are real, they are a calculated response, they are meaningful adaptive protective behaviors. Adding strength to a compensation makes them even more real, plastic, permanent. Fix the problem. Adding random strength is juvenile thinking. Letting one's client load/train/lift when in pain is juvenile (read below). Once we realize adding load to the problem can be helpful or hurtful, we are on the right path, we are winning. But it takes a deep understanding of how to add load safely, wisely, so that our client can benefit. We must try to understand adaptive behaviors, we must try to understand why our client's CNS made the choices it did.
Now, imagine a client with ankle pain, and resultant ankle dorsiflexion/ankle rocker loss. Now, imagine what their gait will look like as well with that premature heel rise and everything that adapts from that premature heel rise. Now, read below and understand one way how the CNS adapts. Why? So that the next time one chooses a stretch, mob, flossing, etc to gain a range of motion, without any additional meaningful measures, hopefully they will realize they are likely not addressing the deeper problem. Pushing a range of motion is not the same as safely re-earning a range of motion. Far from it. -Dr. Allen
*Effect of Achilles tendinosis on the agonist, synergist and antagonist muscles. Chang and Kulig
"In addition to the altered control system, the present study also observed an adaptive behaviour, as illustrated by the activity of agonist, synergist and antagonist muscles. This was seen during single-legged hopping, where the contribution from the triceps surae muscle to the plantar flexors was decreased and the co-contraction from the tibialis anterior muscle was also decreased on the involved side in individuals with Achilles tendinosis. This may be attributed to the protective mechanism shielding the already injured tendon from further injury or even rupture (Lund et al. 1991)."- Chang and Kulig
J Physiol. 2015 Aug 1; 593(Pt 15): 3373β3387.
Published online 2015 Jun 30. doi: [10.1113/JP270220]
PMCID: PMC4553058
PMID: 26046962
The neuromechanical adaptations to Achilles tendinosis
Yu-Jen Chang and Kornelia Kulig