Fundamental Hip Biomechanics: Part 1

Hip Biomechanics

The following excerpted text is copywrited from the textbook; “Form and Function: The Scientific Basis of Movement and Movement Impairment” (Dr. S. Allen, Dr. E. Osar)


Frontal Plane Functional Biomechanics

The hip is a very complex joint.  It is a ball and socket joint with great stability and potentially great mobility.  One of the most critical and essential planes of motion and stability is the frontal plane of hip joint motion.  This plane (coronal/frontal) of motion and stability is largely determined by the hip abductor muscle (HAM) group through an axis of oriented in the anterior-posterior direction through the head of the femur.  The most obvious and simple function of the hip abductor muscles is to produce a movement or moment of abduction of the femur in the acetabulum in the frontal/coronal plane (as in a side lying leg lift).  As mentioned, this is a simple way to determine open kinetic chain range and open chain strength in this range but it is neither true nor transferable in theory or practicality when the foot is on the group.  When the foot engages the ground the typically usable functional range is much less and the muscular function is now to move the pelvis on the stable and somewhat static femoral head in the frontal plane.  Explained in another way, in this closed chain, the insertion of many muscles remains static and the force generated through the muscle will pull at the origin and generate movement at the joint in this manner.  In a nutshell, the hip abductor muscles (HAM) will produce either leg motion to the side (abduction) or it will produce a lateral bending or lateral flexing of the pelvis-torso into the same range of motion (abduction). 

The most critical and commonly considered hip abductor muscles (HAM) are the gluteus medius, gluteus minimus and tensor fascia lata-iliotibial band complex.  These muscles have the most favorable line of pull and all have a femur and pelvis attachment.  We will call these muscles collectively the HAM group.  In the stance phase of gait the body’s center of gravity (COG) is medial to the hip joint axis of motion.  Thus, in this single leg support phase of gait the tendency will be for the body mass above the hip to rotate or drop towards the swing leg side.  This gravitational movement should be offset by the concentric, isometric and eccentric muscular activation of the HAM group through the anterior-posterior oriented axis through the head of the femur.  Any functional strength deficits (concentric, isometric or eccentric) of the HAM group and/or neighboring synergistic stabilizers will result in an altered joint stability challenge because not only do the HAM and surrounding muscles product movement but they also generated joint compression and thus stability.  The possible undesirable outcome may be an altered movement patterning characterized by inappropriate muscle or muscle group activation in either timing, force, speed or coordination with typically coupled muscles.  These challenges to the joint and its normally expected movement patterns will result in the body’s search for more stable positions in the frontal, sagittal or oblique planes.  These newly established, yet less efficient, positions and patterns of movement are initially welcomed compensations but in time as the new accommodations become rooted in pattern the synergists and other recruitments become overburdened and further demand compensations from other neighboring muscles eventually resulting in pain, joint derangement and dysfunction.  These compensations in recruitment and movement eventually will lead to non-contractile soft tissue changes such as hip capsule pattern changes in tension and length. These non-contractile soft tissue changes can not only dictate or perpetuate the newly established aberrant joint movements but help engrain the abnormal movement patterns and their new neurologic patterns.