Human gait is cyclical. For the most part, when one limb is engaged on the ground (stance phase), the other is in swing phase. Before we continue, you should recall that there is a brief double limb support phase in walking gait, that which is absent in running gait. Also, we wish to remind you of our time hammered principle that when the foot is on the ground the glutes are heavily in charge, and when the foot is in the air, the abdominals are heavily in charge.
For us to move cleanly and efficiently one would assume that the best way to do that would be to ensure that the lower 2 limbs are capable of doing the exact same things, with the same timing, same skill, same endurance and same strength. This goes for the upper 2 limbs as well, and then of course the synchronizing of the 4 in a cohesive effort. For this clean seamless motor function to occur, one must assume that there would be no injuries that had left a remnant mark on one limb thus encouraging a necessary compensation pattern in that limb (and one that would then have to be negotiated with the opposite limb as well as the contralateral upper or lower limb). For example, when right ankle rocker (dorsiflexion) is impaired, early heel departure will occur and hip extension will be limited. An alteration in right glute function will most likely follow. One could theorize that the left step length (the length of measure from right heel strike through to left heel strike) would thus be shortened. This would cause a premature load onto the left limb, and could very well force the left frontal plane to be more engaged than is desirable. This could lead to left core and hip frontal plane weakness and compensation patterns to be generated (ie. right arm abduction. One can see all of these components in the photo above, and in this case here). It could also lead to a pelvic distortion pattern which would further throw off the anti-phasic nature of symmetrical and efficient gait. To complicate the cyclical scenario, the time usually used to move sagittally will be partially used to move into, and back out of, the left frontal plane. This will necessitate some abbreviations in the left stance phase timely mechanical events. Some biomechanical events will have to be abbreviated or sped through and then the right limb will have to adapt to those changes. These are simple gait problems we have talked about over and over again here on the gait guys blog. (Search “arm swing” on our blog and you will find 45 articles around this topic.) These compensation patterns will include expressed weaknesses in various parts of the human frame as part of the pattern, and merely fixing those weaknesses does not address the right ankle rocker problem. Fixing said weaknesses merely encourages the brain to possibly continue to perpetuate necessary tightnesses in other muscles and engrain the compensations (challenges to mobility and stability) further or more complexly. It is easy to find something weak, it takes a sharp brain to find the sometimes silent sparking event. Are you able to find the problem in this never ending loop of compensations and find a way to unwrinkle the system one logical piece at a time, or will you just chose to strengthen the wrinkled system and hope that the new strength on top of the compensations is adequate for you our your client ? One should not be forever sentenced to daily or weekly rehabilitative sessions/ homework to negate and alleviate symptoms, this is a far more durable machine than that. Fix the problem.
Now, lets add another wrinkle to the system. What if there were problems before any injuries ? Meaning, what if there were problems during the timely maturation and suppression of the primitive reflexes ? Or problems in the timely appearance or maturation of postural reflexes? A problem in these areas may very well result in a central or peripheral nervous system malfunction and a representation of such in one’s movement and gait. That is a larger discussion for another time.
There is a reason that in our practices we often assess and treat contralateral upper and lower limbs as well as to address remnants from old injuries whether they are symptomatic or not. This is a really tough puzzle and game you are playing. For example, when there is insufficient hip internal rotation unilaterally you can regain some of the loss through increased foot pronation unilaterally, but at a consequence to both the local and global pictures. Remember, most of the time you are trying to walk in a straight line from A to B and if the parts are not symmetrical you have many options to compensate. It is not as simple as telling your athlete to swing one arm more, or to stop pulling it across their body; they need to do those things, it is called a “compensation”. It is often not as simple as finding an impaired Rolling Pattern and driving it back to symmetry, in doing so, you may have just added strength and skill to a compensation. Merely addressing things locally can be a crime. If you are seeing an arm swing change, you would be foolish not to look at the opposite lower limb and foot at the very least, and of course assess spinal rotation, lateral flexion and hinging as well as core mobility and stability. For your neuro nerds, remember the receptors from the central spine and core fire into the midline vermis of the cerebellum (one of the oldest parts of our brain, called the paleo cerebellum); and these pathways, along with other cerebellar efferents, fire our axial extensor muscles that keep us upright in the gravitational plane and provide balance or homeostasis. So, those need assessed and addressed as well.
Or, if this is too much thinking for you, … you can just train harder and get stronger . . . in all your compensation patterns, after all, it is easier than figuring out why and how that right ankle started the whole mess, if in fact that is even the first piece of the puzzle.
Welcome to the matrix.
shawn and ivo, the gait guys